COMPUTER PROGRAM DESCRIPTIONS

DTEAS: A program from the IBM Scientific Subroutine Package
for finding the limit of a sequence by the method of nonlinear trans-
formations.

The subroutines MAHON, BESASM, and HAHN are transcribed from
Somlo [2].

PERFORMANCE

Values computed for the limiting case of a step on one conductor
only have been compared with Somlo’s published values. The agree-
ment was found to be within about 0.05 percent. For the same limit-
ing case, the values computed by Dpscarl and pscap?2 are in agree-
ment within 0.01 percent.

The programs have been run on an IBM 360/67 computer. The
time required to compute one value is about 1 min; values for
additional frequencies with the same dimensions take about § min
per frequency.

Storage requirements are 60 000 bytes for pscarl and 80 000
bytes for pscar2.
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DISFIL, A Computer Program for the Optimum
Synthesis of TEM Transmission-Line Filters

PURPOSE: DISFIL uses exact network syn-
thesis techniques to produce the
final cascade of unit elements and
LC-type resonators, for all com-
mon kinds of optimum high- or
lowpass Butterworth or Cheby-
shev filters, terminated either at
a single side or at both sides in a
finite nonzero resistor.

Fortran {V; length of card deck
2400 cards.

G.Hoffman and H. Vanooteghem,
Laboratory for Electromagnetism
and Acoustics, University of
Ghent, B-9000, Ghent, Belgium.
ASIS-NAPS Document No.
NAPS-01880.

One card reader for input, one
line printer for output, or one
time-sharing terminal for both,
124 K of memory is required, but
using built-in overlay structure, a
partition as small as 40 K is
sufficient.

DISFIL has been written in order
to bring the design of distributed
quarter-wave filter structures,
based on exact network techniques, into easy reach. For any common
kind of commensurate filter two-port, it computes the cascade of
shunt- or series-type resonators and the interconnecting transmission
lines. The computational method used closely follows the normal
synthesis procedure, and needs as input data the ordinary specifica-
tions necessary for filter design. The essential steps to be taken are
as follows.

1) Determine the equivalent circuit of the physical structure:
bandpass or bandstop type, the number m of series- or shunt-type
resonators, and the number # of unit elements.

2) Determine whether the circuit is terminated at both sides in a
finite nonzero resistor, which is the common situation for filters, or
whether there is only one termination, a case that often arises in
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diplexers where bandpass and bandstop structures are connected in
series or parallel.

3) Specify the central frequency fo (GHz) and the relative band-
width @ (percent) of the filter.

4) Specify the desired response type, Butterworth or Chebyshev.
In the latter case also specify the maximum ripple (dB) allowable
over the passband.

The procedure to compute the filter elements is then based on the
following definitions.

1) Richards’ variable S is defined as
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2) The cutoff point on the Richards-plane imaginary axis is then
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3) Thz approximation functions to be used are
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For optimum Butterworth filters, we have the following.

a) Bandpass case:
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For optimum Chebyshev filters, we have the following (e is the
ripple factor).

a) Bandpass case:
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b) Bandstop case:
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Expressicns (3) to (7), introduced by Horton and Wenzel [1], are
called cptimum approximation functions, because they treat the unit
element as a basic selective element of the cascade.

4) One of the expressions (4) to (7) is used to generate the posi-
tive real input impedance of the terminated filter. If the filter has
double terminations, (3) is interpreted as the power transfer of the
filter, normalized to the available power of the generator:
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The input impedance is constructed from
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The plus cr minus sign in (9) is chosen in accordance with the singu-
larity type of the equivalent circuit in the stopband.

If there is only one terminating resistance, the approximation
function (3) is treated as the real part of the input impedance or
admittance of the terminated filter.

5) The input impedance is broken down into its elementary parts
by use of a Darlington synthesis technique. The sequence is quite
arbitrary, but is conveniently chosen to be the topology of the
equivalent circuit.

Using DISFIL, this procedure is reduced to the specification of a
valid combination of design parameters. The generation and manipu-
lation of polynomials, finally resulting in the element values of the
filter cascade, has been implemented for all valid sets of specification
data. Nezdless to say that the special cases # =0 (classical prototypes)
and m =0 (quarter-wave impedance transformers and lowpass filters)
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are also implemented. As a program option, it is also possible to
compute the number of resonators of each type (between specified
limits) in order to fulfill an attenuation requirement. However, the
total number of filter elements is always limited to 20. This is mainly
due to the accumulation of roundoff errers inherent with most net-
work synthesis techniques. Running time is very short, but fairly
unpredictable due to the root-finding process. A normal case with
7 or 9 elements will take about 4 or 5s on an IBM 360/65.

The produced output is readily used for practical design purposes;
an attenuation versus frequency plot is optional, and the results are
the nermalized characteristic immittances of the transmission lines.
In many cases the only step left is the computation of line dimensions,
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while for other cases (e.g., interdigital filters) the results are directly
usable for capacitance matrix transformations or Kuroda-type ele-
ment interchanges.
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